skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haberle, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Indo-Pacific Pollen Database (IPPD) is the brainchild of the late Professor Geoffrey Hope, who gathered pollen records from across the region to ensure their preservation for future generations of palaeoecologists. This noble aim is now being fulfilled by integrating the IPPD into the online Neotoma Palaeoecology Database, making this compilation available for public use. Here we explore the database in depth and suggest directions for future research. The IPPD comprises 226 fossil pollen records, most postdating 20 ka, but some extending as far back as 50 ka or further. Over 80 % of the records are Australian, with a fairly even distribution between the different Australian geographical regions, the notable exception being Western Australia, which is only represented by 3 records. The records are also well distributed in modern climate space, the largest gap being in drier regions due to preservation issues. However, many of the records contain few samples or have fewer than 5 chronology control points, such as radiocarbon, luminescence or Pb-210 for the younger sequences. Average sedimentation rate for the whole database, counted as years per cm, is 64.8 yr/cm, with 61 % of the records having a rate of less than 50 yr/cm. The highest sedimentation rate by geographical region occurs on Australia’s east coast, while the lowest rates are from the Western Pacific. Overall, Australia has a higher sedimentation rate than the rest of the Indo-Pacific region. The IPPD offers many exciting research opportunities, such as examination of human impact on regional vegetation, contrasting first human arrival and colonisation, and assessment of rates of vegetation change during the Holocene. Merging the IPPD into Neotoma also facilitates inclusion of data from the Indo-Pacific region into global syntheses. 
    more » « less
  2. Abstract. The Indo–Pacific Pollen Database (IPPD) is the brainchild of the late professor Geoffrey Hope, who gathered pollen records from across the region to ensure their preservation for future generations of palaeoecologists. This noble aim is now being fulfilled by integrating the IPPD into the online Neotoma Paleoecology Database, making this compilation available for public use. Here we explore the database in depth and suggest directions for future research. The IPPD comprises 226 fossil pollen records, most postdating 20 ka but with some extending as far back as 50 ka or further. Over 80 % of the records are Australian, with a fairly even distribution between the different Australian geographical regions, with the notable exception being Western Australia, which is only represented by three records. The records are also well distributed in the modern climate space, with the largest gap being in drier regions due to preservation issues. However, many of the records contain few samples or have fewer than five chronology control points, such as radiocarbon, luminescence or Pb-210, for the younger sequences. Average deposition time for the whole database, counted as years per centimetre, is 64.8 yr cm−1, with 61 % of the records having a deposition time shorter than 50 yr cm−1. The slowest deposition time by geographical region occurs on Australia's east coast, while the fastest times are from the western Pacific. Overall, Australia has a slower deposition time than the rest of the Indo–Pacific region. The IPPD offers many exciting research opportunities to investigate past regional vegetation changes and associated drivers, including contrasting the impact of the first human arrival and European colonisation on vegetation. Examining spatiotemporal patterns of diversity and compositional turnover/rate of change, land cover reconstructions, and plant functional or trait diversity are other avenues of potential research, amongst many others. Merging the IPPD into Neotoma also facilitates inclusion of data from the Indo–Pacific region into global syntheses. 
    more » « less
  3. Abstract Understanding the long-term interactions between people and the ecosystem in which they live is vital for informing present-day ecosystem management plans. The use of pollen data for palaeoecological reconstructions is often limited by the low taxonomic resolution of pollen, which often reduces the detail of reconstructions of human influence on past vegetation. This is true for Australia where Myrtaceae, particularly Eucalyptus species, dominate the landscape, but their pollen is difficult to differentiate. We present a pollen record with high taxonomic resolution of Myrtaceae pollen from the Bass Strait area of southeast Australia, focusing on the period of major human occupation there during the Late Glacial transition. These results were compared to records of hydrology, fire, sediment deposition, herbivore abundance and human occupation. We found that Indigenous burning practices promoted open, subgenus Monocalyptus Eucalyptus woodland at the expense of dense subgenus Symphomyrtus Eucalyptus forest. Previous studies have shown the need for management of the vegetation of southeast Australia guided by Indigenous people, to promote ecosystem resilience and reduce the risk of wildfires. Our results reveal that in addition to reducing wildfires, cultural burning by Indigenous people has the potential to promote the diversity of ecosystems and habitats. 
    more » « less
  4. Introduced predators currently threaten endemic animals on Madagascar through predation, facilitation of human-led hunts, competition, and disease transmission, but the antiquity and past consequences of these introductions are poorly known. We use directly radiocarbon dated bones of introduced dogs ( Canis familiaris ) to test whether dogs could have aided human-led hunts of the island’s extinct megafauna. We compare carbon and nitrogen isotope data from the bone collagen of dogs and endemic “fosa” ( Cryptoprocta spp.) in central and southwestern Madagascar to test for competition between introduced and endemic predators. The distinct isotopic niches of dogs and fosa suggest that any past antagonistic relationship between these predators did not follow from predation or competition for shared prey. Radiocarbon dates confirm that dogs have been present on Madagascar for over a millennium and suggest that they at least briefly co-occurred with the island’s extinct megafauna, which included giant lemurs, elephant birds, and pygmy hippopotamuses. Today, dogs share a mutualism with pastoralists who also occasionally hunt endemic vertebrates, and similar behavior is reflected in deposits at several Malagasy paleontological sites that contain dog and livestock bones along with butchered bones of extinct megafauna and extant lemurs. Dogs on Madagascar have had a wide range of diets during the past millennium, but relatively high stable carbon isotope values suggest few individuals relied primarily on forest bushmeat. Our newly generated data suggest that dogs were part of a suite of animal introductions beginning over a millennium ago that coincided with widespread landscape transformation and megafaunal extinction. 
    more » « less
  5. Global vegetation over the past 18,000 years has been transformed first by the climate changes that accompanied the last deglaciation and again by increasing human pressures; however, the magnitude and patterns of rates of vegetation change are poorly understood globally. Using a compilation of 1181 fossil pollen sequences and newly developed statistical methods, we detect a worldwide acceleration in the rates of vegetation compositional change beginning between 4.6 and 2.9 thousand years ago that is globally unprecedented over the past 18,000 years in both magnitude and extent. Late Holocene rates of change equal or exceed the deglacial rates for all continents, which suggests that the scale of human effects on terrestrial ecosystems exceeds even the climate-driven transformations of the last deglaciation. The acceleration of biodiversity change demonstrated in ecological datasets from the past century began millennia ago. 
    more » « less